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Free Energy of a Nonuniform System. I. Interfacial Free Energy

Jorn W. Camn anp Jorn E. Hiivriarp
General Electric Research Laboratory, Schenectady, New York

(Received July 29, 1957)

It is shown that the free energy of a volume V" of an isotropic system of nonuniform composition or density
is given by : Nv v [ fo(c)+x(Ve)*]dV, where Ny is the number of molecules per unit volume, Ve the composi-
tion or density gradient, f, the free energy per molecule of a homogeneous system, and « a parameter which,
in general, may be dependent on ¢ and temperature, but for a regular solution is a constant which can be
evaluated. This expression is used to determine the properties of a flat interface between two coexisting
phases. In particular, we find that the thickness of the interface increases with increasing temperature and
becomes infinite at the critical temperature T, and that at a temperature T just below 7. the interfacial free

energy ¢ is proportional to (T.—T)3.

The predicted interfacial free energy and its temperature dependence are found to be in agreement with
existing experimental data. The possibility of using optical measurements of the interface thickness to
provide an additional check of our treatment is briefly discussed.

1. INTRODUCTION

N most previous theoretical treatments of interfacial
energies the interface has been arbitrarily restricted
to some predetermined thickness. Thus Young'® and
Becker'® assumed that two adjoining phases are homo-
geneous up to their common interface, while others?®.(»
have made calculations based on the existence of a
single intermediate layer. Though such assumptions
may be justifiable in certain instances,® it is evident that
they are incorrect in principle since, once the tempera-
ture and pressure of the system are specified, the
interfacial thickness is no longer an independent
variable.

Many years ago, Rayleigh? noted that the expression
derived by Young!® was of such a form that the tension
of an interface should be inversely proportional to the
number of intermediate layers plus one. However,
Rayleigh neglected to take into account the increase in
free energy resulting from the introduction of non-
equilibrium material in a diffuse interface, and he was
therefore unable to estimate the interfacial thickness.
The first calculation of the equilibrium thickness was
apparently made by Ono® (and later repeated, inde-
pendently, by Hillert®). Though the approach used by
these two authors is undoubtedly correct, it requires the
numerical solution of a set of difference equations for
each particular case. This procedure is not only tedious,
but also obscures certain properties of the interfacial
energy and precludes its expression in an analytical
form, In addition, the calculations were based on the

1(a) Miscellaneous Works of ithe Late Thomas Young, George
Peacock, editor (J. Murray, London, 1855), Vol. 1, pp. 462-466;
(b) R. Becker, Ann. Physik 32, 128 (1938).

2 {a) E. A. Guggenheim, Trans. Faraday Soc. 41, 150 (1945);
(b) R. Defay and I. Prigogine, Bull. soc. chim. Belges 59, 255
(1950).

3 Murakima, Ono, Tamura, and Kurata, Phys. Soc. Japan 6, 309
(1951).

* Lord Rayleigh, Phil. Mag. 16, 309 (1883); ébid. 33, 209 (1892).

5 S. Ono, Mem. Fac. Eng. Kyushu Univ, 18, 195 (1947).

& M. Hillert, “A theory of nucleation for solid metallic solu-
tions,” D.Sc. thesis, Massachusetts Institute of Technology,
Cambridge (1956).

nearest neighbor regular solution*® model and there is
thus some doubt as to their general validity.

The treatment that we will adopt is analogous in
some respects to those used for the evaluation of the
energy of magnetic’ and ferroelectric® domain walls, and
of the interface between a metal in its normal and
superconducting states.” We will derive a general equa-
tion for the free energy of a system having a spatial
variation in one of its intensive scalar properties, such as
composition or density. We will refer to such a system as
being “nonuniform.” In a subsequent paper we will use
this equation as the starting point for a new theory of
three-dimensional nucleation. For the present, however,
we will confine its application to determining the free
energy of a flat interface between two coexisting phases.
This will include both a general treatment (Sec. 2) and
an evaluation (Sec. 3) in terms of the regular solution
theory. In Sec. 4 we will check the predicted interfacial
free energy against existing experimental data. The
paper will conclude with a brief discussion of certain
optical methods which might provide an additional ex-
perimental check on the validity of our treatment.

2. GENERAL TREATMENT
a. Free Energy of a Nonuniform System

The following analysis is valid for any intensive
scalar property of the system other than temperature or
pressure, but to simplify the exposition we will suppose
that the system is a binary solution and that the non-
uniform property is ¢, the mole fraction of the B com-
ponent. We would expect that the local free energy per
molecule,T f, in a region of nonuniform composition will
depend both on the local composition and on the

* Several different meanings are associated with the term
“regular solution.” We will use it to denote a solution having an
ideal configurational entropy and an enthalpy of mixing which
varies parabolically with composition [see Eq. (3.1)].

7 F. Bloch, Z. Physik 74, 295 (1932).

8 T, Mitsui and J. Furuichi, Phys. Rev. 90, 193 (1953).

? J. Bardeen, Phys. Rev. 94, 554 (1954).

1 Symbols are listed in the appendix.
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INTERFACIAL FREE ENERGY

composition of the immediate environment. We will
therefore attempt to express f as the sum of two contri-
butions which are functions of the local composition and
the local composition derivatives, respectively.

We will assume that the composition gradient is
small compared with the reciprocal of the intermolecular
distance and will take ¢ and its derivatives as inde-
pendent variables. Providing f is a continuous function
of these variables, it can be expanded in a Taylor series
about f, the free energy per molecule of a solution of
uniform composition ¢. Employing the subscripts 4, 7, in
the usual manner to denote the successive substitution
of the «, v, and z components for the variable x4, and the
subscript zero to indicate the value of the parameterina
solution of uniform composition, leading terms in the
expansion for f are:

f(C,VC,V?C,' ) )
= fole)+ 2 i Li(3c/0x:)+ 245 k4P (9%/x.:9x;)

+ (/D5 x;2[(9¢/0x:) (8c/dx) ]+ -+, (2.1)
where
Li=[3f/8(8¢/0x,) Lo,
ki 0 =[87/8(0%/ 0:0%;) Jo 2.2)

k3@ =[8f/8(¢/dx:)d(d¢/dx3) Jo.

In general, «;; and kP are tensors reflecting the
crystal symmetry and the L,’s are components of a
polarization vector in a polar crystal. For a cubic
crystal or an isotropic medium (and these are the only
cases that we will consider) the free energy must be
invariant to the symmetry operations of reflection
{(x~>—x;) and of rotation about a fourfold axis (xi—x;).
Therefore,

L,=0,

kW =r;={af/0V%]y for i=},

ki V=0 for isj,

ki =re=[8*f/ (9] Vc[)'Jo for i=j,

and
K¢1(2)=0 fOI‘ 1?5].
Hence for a cubic lattice, Eq. (2.1) reduces toi
e, V6, V%, - -y = fole) FriVietwa (V)24 - -, (2.3)

Integrating over a volume V of the solution we obtain
for the total free energy F of this volume:

F=Nyf fav
v

=Ny f [ fole)+x1Vietwa(Vo)4 - - TV,  (2.4)

1 This equation can also be derived as follows. If we assume that
the Jocal free energy [ is a function only of 7 and the composition
derivatives then, since f, a scalar, must be invariant with respect
to the direction of the gradient, only terms in even powers of the
operator V can appear. The leading terms of the function must
therefore be of the form given in Eq. (2.3).
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where Ny is the number of molecules per unit volume.
By applying the divergence theorem we obtain:

f(mV?c)de-—f (dk1/de) (Vc):dV
y v
-+ «iVe-n)dS. (2.3
J wrenas. @s)

Since we are not concerned with effects at the external
surface, we can choose a boundary of integration in
Eq. (2.4) in such a manner that Vec-n is zero at the
boundary. The surface integral therefore vanishes and
we can employ Eq. (2.5) to eliminate the term in V%
from Eq. (2.4) to obtain:

F:Nvf Lfotx (V)24 ... dV, (2.6)
v
where
k= —dky/dc+xs
=—[8f/0cavic]o+[8*f/(8]Ve|)Jo.  (2.7)

Equation (2.6) is the central one of the treatment. It
reveals that, to a first approximation, the free energy of
a small volume of nonuniform solution can be expressed
as the sum of two contributions, one being the free
energy that this volume would have in a homogeneous
solution and the other a “gradient energy’” which is a
function of the local composition.

b. Free Energy of a Flat Interface

We will consider a flat interface of area 4 between
two coexisting isotropic phases a and § of composition§
¢q and cg. Tt will be assumed that the free energy of non-
equilibrium material of composition intermediate be-
tween ¢, and ¢z can be represented by a continuous
function fo(c) of the form shown in Fig. 1.

§ If oz and py (the densities, respectively, of a pure liquid and
its vapor) are substituted for ¢ and cg, then the equations derived

in this section will apply specifically to an interface between the
condensed phase and its vapor.



260

Applying Eq. (2.6) to the one-dimensional composi-
tion change across the interface, and neglecting terms in
derivatives higher than the second, we obtain for the
total free energy F of the system:

-0

fole)+u(de/dxy® Jdx. (2.8)

F=ANy

e

The specific interfacial free energy, o, is by definition the
difference per unit area of interface between the actual
free energy. of the system and that which it would have
if the properties of the phases were continuous through-
out. Hence: ’

“+
o=Ny f [Fo(c)+(de/da)?
- —cun(e)— (1—Jua(e) Jdz,

where pa{e) and pg(e) are the chemical potentials per
molecule {referred to the same standard states as fo) of
the species 4 and B in the a or 8 phase. For ¢ to be
uniquely defined it is obviously necessary that the
chemical potential of a particular species be the same in
both phases and therefore that the two phases be in
equilibrium—a condition which is not required for
calculating the energy of an interface with an abrupt
composition change. Equation (2.9) can be rewritten:

(2.9)

40
s=Ny f [Af(O)-+x(de/do?]dz,  (2.10)

where Af(c) is defined by
Af(e)= folc)—[eusle)+(1—cuale)] (2.11)
= C[#B (6) —#3(6)]+ (1 _C)D'-A (C) A (3)]- (2-12)

Af(c) may therefore be regarded as the free energy
referred to a standard state of an equilibrium mixture of
o and 8 [Eq. (2.11)], or as the free energy per molecule
of transferring material from an infinite reservoir of
composition ¢, or ¢g to material of composition ¢
[Eq. (2.12)].

According to Eq. (2.10) the more diffuse the interface
is, the smaller will be the contribution of the gradient
energy term, x{dc/dx)?, to ¢. But this decrease in energy
can only be achieved by introducing more material at
the interface of nonequilibrium composition and thus at
the expense of increasing the integrated value of Af(c).
At equilibrium the composition variation will be such
that the integral in Eq. (2.10) is a minimum. (This is
equivalent to the requirement that the chemical po-
tentials be constant throughout the system.)

If we substitute the integrand of Eq. (2.10) in the
Euler equation, we will obtain a differential equation
whose solutions are the composition profile correspond-
ing to stationary values (ie., maxima, minima, or
saddle points) of the integral. Since the integrand does
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not explicitly depend on %, the appropriate form! of the
Euler equation is

I—{dc/dx)[dI/d(dc/dx)]=0,

where I represents the integrand. We thus obtain as the
condition for a stationary value:

Af(c)—«(dc/dx)?=const. (2.13)

The constant in this equation must be zero since A f(c)
and (dc/dx) both tend to zero as ¥—- . Hence for a
minimum value of ¢:

Af{cy=«(dc/dx)*

Using this expression to eliminate x(d¢/dx)? from Eq.
(2.10) we find:

+oo
o=2Ny f Af(0)dz.

-0

(2.14)

Changing the variable of integration from x to ¢ by
means of Eq. (2:14), we finally obtain||:

o=2Ny f P [kAf (o) e, (2.15)

In the next section we will use the regular solution
theory for a numerical evaluation of ¢. The general
treatment can, however, be taken a step further to
determine the functional dependence of ¢ on tempera-
ture in the immediate vicinity of the critical (or conju-
gate) temperature T, at which the two phases attain the
same critical composition ¢..

If fo can be expanded in a Taylor series about 7. and

W H. Margenau and G. M. Murphy, The Mathematics of Physics
and Chemistry (D. Van Nostrand Company, Inc., Princeton,
1943}, p. 195.

[| An interface between two fluids which differ in more than one
scalar parameter is considerably more complicated. Consider the
case in which two parameters, # and m, determine the free energy
Af(n,m) and let the corresponding gradient energy coefficients be
«n and «n,. The interfacial energy is the minimum of :

Ny _f * LS () ~F s (A1 35k (dim/ d)* Tdox
where we have neglected the cross term. The Euler equations for
this problem yield:
BAf/dn=x.(d*n/d:%)

AAS/Om=rxm{d®m/da?).
These can be combined to give:

e=2Nv f :ﬂ (knd LI 14 (km/kn) (A fdn)e Jhdm,

which reduces to Eq. (2.15) if m is a constant or k. is small. The
way m changes with # through the interface is found by solving the
two Euler equations to eliminate x. The solution will correspond to
the trajectory of a particle of unit mass having a vanishing total
energy (kinetic and potential) on a potential surface given by:
— A f(n\/kn,mr/km). The particle starts from one of the coexisting
phases and slides to the other; it does not follow potential troughs
but banks on curves to reduce gradient energy at the expense of
volume energy. There may be several different paths, all of which
represent stationary values of the interfacial free energy, but only
the path having the lowest free energy will correspond to the
actual interface.

and



INTERFACIAL FREE ENERGY

¢e, the following expression can be derived for Af:

Afe~ro=—B(Te—T)[ (A0}~ (Ac)"]
1L (80— (Ac )i+

in which Ac= (c—¢,), Ac,=(¢s—¢) = (C,—¢o) and B and
v are inherently positive constants defined by the
following derivatives of f, evaluated at ¢=c¢. and
T=T,:

(2.16)

B=(8*fo/0Tdc)/2! (217)
v=(8*fo/8c") /4! (2.18)

This expansion gives the following relationships:

(Aco)tir~7y=B(T,—T)/2y, (2.19)
(Af)a~ro=7[(Aco)*— (Ac) . (2.20)
From Egs. {2.15) and (2.20) we obtain:
+Ace
(o) r~ry=2Ny f (kY[ (Ac.)?—(Ac)*Jd(Ac). (2.21)

—Aco

If in the vicinity of the critical point, « is continuous and
nonvanishing, then we may, sufficiently close to T,
neglect any variations in x and assume it constant. This
is equivalent to expanding x about the critical point and
neglecting higher terms, or to applying the mean value
theorem. Thus, we can evaluate the integral of Eq.
(2.21) and use (2.19) to obtain:

(o) r~ra= (VINv/3v)BHT .~ T)%.  (2.22)

Our analysis, therefore, predicts that near the critical
temperature the interfacial free energy should be pro-
portional to (T,—T)*. It is fairly easy to prove that any
model which confines the thickness of the interface to a
fixed number (say p) of molecular planes leads to an
expression for ¢ which is proportional to (T'— 7))/ (p+1)
and is thus linearly dependent on temperature.§
According to Eq. (2.19) the coexistence curve should
be parabolic in the immediate vicinity of ¢,. It can be
shown that this functionality should also apply to the
density of a liquid and its saturated vapor near the
critical point. This is found to be true for certain

4 This may be proved as follows: let the composition difference
between the ;th plane and its neighbor be v;Ac,. The energy of the
interface between these two planes is therefore proportional to
(¥:Ac.)?. The total interfacial energy will be proportional to the

» »
sum (Ac)? Z (3:)?% plusthesum, I Af;, of the volume free energy
i=0 =g

terms. Sufficiently close to the critical point the latter contribution
can be neglected since it varies as (7. — T2 whereas (Ac,)? varies as

P
{T,—T). The minimum of (Ac.)? 2 (y:)? subject to the condition
=0

ik
2 y;=1 occurs when each y;=1/(p+1). Hence (o)7~T.
i=p
« (T.—~T)/(p+1). It is interesting to note that this is the expres-
sion derived by Rayleigh.t
B R. Fowler and E. A. Guggenheim, Siatistical Mechanics
(Cambridge University Press, London, 1949), pp. 316-318.
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systems!*® but the coexistence curves for many gases!
and binary liquid mixtures'®*® appear to be cubic; i.e.,
(T.—T) in such cases is approximately proportional to
(]Ac.])® So far there appears to be no satisfactory
explanation for this anomaly. Since we have used Eq.
(2.19} in deriving Eq. (2.22) the latter is strictly valid
only for those systems having a parabolic coexistence
curve. However, we will later show that it may also be a
good approximation for the other systems.

¢. Composition Profile and Thickness
of Interface

The composition variation across the interface as
determined by Eq. (2.14) is such that:

de/dx= (Af/e). (2.23)

Inspection of the Af function (Fig. 1} indicates that to
satisfty Eq. (2.23) the composition profile must be
sigmoid in shape as shown in Fig. 2.

In the vicinity of the critical point we can make the
appropriate substitutions from Eqgs. (2.19) and (2.20)
and integrate Eq. (2.23) (assuming as before that « is
constant) to obtain

(Ac/Ace)(r~ry=tanh{[B(T—T,)/ 2 Jtx},

where the distance x is measured from an origin at
Ac=0 (ie., ¢==¢,). Using this equation, the thickness ]
of the interface could be defined as the distance z for a
given Ac/Ac, ratio. But for convenience in subsequent
calculation we will express [ in terms of the gradient at
¢. as follows:

1= (co—cp)/ (dc/dx)ce=2A¢ o(x/ A fmax) .

Near the critical temperature we obtain on substitution
from Egs. (2.23), (2.19), and (2.20):

lormrey=2[2¢/B(T .~ T) ]t (2.26)

2 A, Miinster and K. Sagel, Z. physik Chem. 7, 297 (1956).

18 Krichevskii, Khazanova, and Linshitz, Doklady Akad. Nauk.
$.5.S.R. 100, 737 (1935).

¥ E. A, Guggenheim, J. Chem. Phys. 13, 253 (1945).

15 7. D. Cox and E. F. G. Herington, Trans. Faraday Soc. 52, 926
(1956).

15 Q, K. Rice, J. Chem. Phys, 23, 164 (1955).

(2.24)

(2.25)
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Thus we see that the thickness of the interface increases
with increasing temperature and becomes infinite at the
critical temperature.

Before leaving the general treatment it should be
emphasized that we have tacitly assumed that « is
everywhere positive and nonvanishing. This is evidently
true for the single phase region of the system as other-
wise, contrary to experience, the homogeneous phase
would be unstable with respect to periodic composition
fluctuations. We can see no reason why « should change
sign or vanish in the unstable region, but we are unable
to prove that it could not happen. If for some system
there were a range over which ¥<0, then there would be
a corresponding discontinuity in the interface profile
and the treatment would have to be modified ac-
cordingly.

3. APPLICATION OF THE REGULAR
SOLUTION THEORY

The determination of the absolute value of ¢ and its
temperature dependence outside the range T'~T, re-
quires the use of a solution model for the evaluation of &
and the free-energy function Af. For this purpose we
believe it worthwhile to apply the regular solution
theory despite its well-known shortcomings. Accordingly,
we will assume that the free energy fr of a (uniform)
solution is given by:

fr@)=wc(1—c)+kTcloc+(1—c) In(1—¢)]. (3.1)

The enthalpy term in this equation is usually derived!?
by considering only the molecular interactions between
nearest neighbors. The same result can also be obtained!®
from a summation of the pairwise interactions through-
out the whole system. However, as we will show, these
two approaches do not lead to the same value for the
gradient energy in a nonuniform solution.

a. Free Energy of a Nonuniform
Regular Solution

We will first determine the enthalpy for a two-
component cubic lattice. The following assumptions
will be made: (1) the lattice parameter is independent of
composition, (2) the intermolecular potential is a func-
tion only of the corresponding intermolecular distance,
(3) the distribution of molecules on the lattice sites is
locally random.

Let C(R) and C(S) be the probabilities of finding a B
molecule at sites R and .S, respectively, in the lattice.
The probability, P4g, that an 4B bond will be formed
by a B molecule at R and an 4 molecule at S is

Pap=C(R)[1—-C(S)]. 3.2)
If r is the radius vector of site S relative to site R, then

7 E. A. Guggenheim, Mixtures (Oxford University Press,
London, 1952).

18 ].) H. Hildebrand and S. E. Wood, J. Chem. Phys, 1, 817
(1933).

W. CAHN AND ]J.
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we can obtain C(S) as a function of C(R) by expanding
about R. Thus,

CE)=CR)+(r-V)C(R)+(1/2)(r-V))C(R)
+(1/3) (- VICR)+- - -.

Considering now the Z, molecules in the nth coordina-
tion shell at a radius 7, from R. The probable number of
AB bonds, Z,(P4g)., between a B molecule at R and
the 4 molecules in its #nth shell is, from Egs. (3.2)
and (3.3):

Zn(Pap)n=Z{C(R)[1-C(R) ]-C(R)[Z(r- V)C(R)
+A/2DZ(-V)CR) ]}, (34

where the summations are over all the sites in the nth
shell, and the third and higher derivatives in Eq. (3.3)
are neglected. Expressing Eq. (3.4) in terms of the
vector components and performing the indicated sum-
mations** we obtain for a cubic lattice:

Zn(Pap)=Zn(R)[1—c(R)]— (1/6)Zuc(R)V*c(R),

where the probability C has been replaced by the
corresponding mol fraction ¢ of the B component.

If v,=Esp— (1/2)(E44+ Eps) where the E’s are the
intermolecular potentials for the nth coordination shell
then, from the previous equation, we find that the total
energy per molecule at R, #(R), relative to the pure
components is:

u(R)=c(R)[1—c(R)JLn Zuvn
~(1/6)c(R)2_n Zatn?vn.  (3.5)

As before, the energy is independent of the direction of
the gradient in the lattice. Defining:

(3.3)

0= 0 Zo¥n (3.6)
and
N= (0 Zar )/ (32 ZnVn), (3.7
we obtain on substitution in Eq. (3.5):
#(R) =wc(1—c) —wA%Vc/2. (3.8)

For a liquid solution the coordination number Z,, is
replaced by 4mr%e(r)dr/V for the probable number of
molecules between r and r4-dr, where p(7) is the reduced
radial distribution function which is assumed inde-
pendent of composition and species involved. Substitu-
tion for Z, gives for the equations corresponding to
(3.6) and (3.7):

w= (%/V)f r*o(r)v(r)dr (3.9)

** The odd and mixed derivatives cancel on summation because
of the center of inversion. The remaining derivatives are summed
as follows. Let the components of r be #, k, and I. Providing not
more than two of the components are equal, all the terms arising
from permutations of %, %, I can be grouped into sets of three, thus
[(hkD), (RLh), (k)] Each group gives on summation
r:2¢(R)V*%(R). When /= k=1, the terms can be grouped into sets of
four: [(hhh), (hR), (RAR), (RAK)] giving a sum of
(4/3)r:%(R)V?*c(R). In either case the average contribution per
molecule 1s (1/3)r,%(R)V%(R).
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and

v:[ fo i r4p(r)y(r)dr] / [3 j; ) rzp(f)v(r)dr]. (3.10)

The parameter A defined by Eqs. (3.7) and (3.10) has
the dimensions of length and represents a rms effective
“interaction distance” for the energy in a concentration
gradient. If interactions other than those between
nearest neighbors are neglected, Eq. (3.10) gives a value
of ro/V3 for A, where 7, is the intermolecular distance.
However, if we assume that v, is proportional to " and
that the radial distribution function p{(r) is approxi-
mated by p=1 for r>r; and p=0 for r <7, we obtain:

A= (n—3)ri/3(n—3),

which gives A=r, for n=0. If a repulsive term pro-
portional to 12 is added to v, then A is increased to a
value of (11/7)¥r,. Thus X is very sensitive to the exact
nature of the long-range interactions.

We have so far only considered the enthalpy of the
solution. The entropy can be derived as follows. Assume
the lattice to be composed of p equicomposition layers
{(not necessarily flat). Let one such layer of composition
¢p contain N p molecules. The number of ways Wp of
arranging the molecules within the layer is:

I/VP=NPI/{(CPNP) '[(1“‘CP)NPJ'}

Since the layers are of assigned composition and cannot
be interchanged, the total number of ways, W, of
arranging all the molecules on the lattice is merely:

W=I] Wp.
P

Substituting for W in the Boltzmann expression:
S=kInlV,
we obtain for the configurational entropy S,

S=kIn(II] Wp)=F> InWp,
P P

where N is the number of molecules. Stirling’s formula
gives:

S=—k Y. p Nplcp Incp+(1—cp) In(1—cp)].

The configurational entropy per molecule s(R) at lattice
point R is therefore:

s(R)=—klclnc+{1—c) In(1=¢c) ],

which is identical to the entropy in a uniform solution of
composition ¢; consequently there is no contribution to
the entropy from a composition gradient.

Comparing coefhicients in Eqgs. (3.8) and (2.3) and
using the subscript “R” to denote the value of a
parameter for a regular solution, we find: =0 and
xir= —cwh\/2. Thus Eq. (2.7) gives

KR=OJ)\2/2.

(3.11)

(3.12)
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According to Eqs. (2.6) and (3.12) the total free energy
Fp is therefore:

Fa=Nv f [fnt (N/2)(VOPNV.  (3.13)

b. Interfacial Free Energy of a
Regular Solution

In addition to the preceding results we will utilize the
following well known properties'” of a regular solution,

ce=1, (3.14)
pa=wt—kT In(1—¢), (3.15)
w=2kT,, (3.16)
In[ce/ (1 —~c.) )= (2¢.—1)w/kT. (3.17)
From Egs. (2.11) and (3.15) we obtain
Afp=—0w(c—co)*+kT{c In(c/c.)
+(1—¢) In[(1—¢)/(1—ca 1}
=fr(c)—fr(co), (3.18)

in which ¢, can be set equal to either of the equilibrium
compositions ¢, or ¢g. Differentiating Eq. (3.18) and
substituting in (2.17) and (2.18) gives:

BR = 2k7
yr=4T./3.

We have now evaluated all the parameters introduced
into the general treatment Sec. 2.

Making the appropriate substitutions in Eq. (2.15)
we obtain for og:

cr=2Ny\eT ooy, (3.19)

where o, is a reduced interfacial energy defined by

- f ? (Afr/T ). (3.20)

This integral has been evaluated numerically and is
plotted in Fig. 3 as ¢, versus T/T, and in Fig. 4 as
log(e,) versus log(1—T/T.). For the region T~T, Eq.
(2.22) gives

{or) T~y =2N\ET[(T,—T)/T 2 (3.21)

An expression can also be derived for the case T~0. At
low temperatures the entropy term in Eq. (3.18) is
small compared with that for the enthalpy, and ¢, is
approximately equal to 1 or 0. Equation (3.20) can
therefore be approximated by

(og)(r~o)=2\/'2_Nv>\kTef {lcl—0)p

+TleIne+(1—¢) In(1—¢)J/4T [c(1— ) P}de.

Evaluating the first term of the integral analytically and
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the second term numerically, we obtain
(or) (T~0)=2NvNeT [ (x/4v2) —0.426(T/T.)].

An approximate expression for ¢z which is valid over the
whole temperature range can be obtained by noting
that:

(3.22)

r= d)[AfR(max)/ch]%ACe,

where, as will be seen from Eqgs. (3.21) and (3.22), ¢
varies from $ at T=T, to /2 at T=0. Using a linear
interpolation for ¢ we find:

oR™ 2]\717)\[ch]%[1!'1366 (AfR(max))%/ZJ
X[A—(x/2=$)(T/T.) .
This equation in conjunction with (3.17) and (3.18)

provides a convenient means of calculating ¢z with an
error not exceeding one percent.

(3.23)

c. Interface Profile for a Regular Solution

For a regular solution the interface profile is sym-
metrical about ¢=4%. From Eq. (2.25) defining the
thickness I, we obtain on substitution from Egs. (2.23),
(3.12), (3.17), and (3.18):

e/ AN=V2{—1~[T Ind¢c.(1—c.) ]/
[(T.(1—2¢)* ]}
and corresponding to Eq. (2.26) we have for T'~T,:
/M) @~ry=2[T./(T.—T) (3.25)

The quantity /z/A has been calculated numerically from
Eq. (3.24) and is plotted versus T/T . in Fig. 5. It will be
recalled that one of the basic assumptions we made
when neglecting the higher terms in the expansion for f
[Eq. (2.1)] was that the gradient was small compared’
with the reciprocal of the intermolecular distance. This
assumption is undoubtedly valid in the critical region.

(3.24)
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At low temperatures where there may be a steep
gradient in concentration at the interface, a large error
might be expected in the calculated value of 6. However
this is not so, because it may be shown that our treat-
ment is equivalent to a sharp interface in which the
number of atoms per unit area of interface is 2N yA%/3!
which at low temperatures is approximately 3NvyA/2
and is therefore in good agreement with the number
calculated for a sharp interface.

4. COMPARISON WITH EXPERIMENTAL RESULTS

If, as an approximation, one accepts the simple “hole”
theory which treats a liquid as a regular solution of
holes and molecules, then the equations derived in the
previous section are directly applicable to the surface
free energy of a pure liquid in equilibrium with its vapor.
Our comparison with experimental measurements will
therefore include both surface and interfacial free
energies.

4. Empirical Expressions for the
Surface Free Energy

It is well known that many of the experimental data
for the temperature dependence of the surface energy
can be fitted by certain empirical expressions. One of the
earliest of these was proposed by van der Waals!® and
can be written in the form:

o=0)(1=T/T,)". (4.1)

Ferguson?®-?! tested this equation for a variety of organic
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Fic. 4. Log(e,) versus log(1—T/T.) for a regular solution.

18 J, D. van der Waals, Z. physik. Chem. 13, 716 (1894).
2 A, Ferguson, Trans. Faraday Soc. 19, 407 (1923).
2t A, Ferguson, Proc. Phys. Soc. (London) 52, 759 (1940).
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liquids and found it to be satisfactory with #=1.21.
According to Guggenheim!* a similar value (actually
11/9) for n fitted the data for liquid Ne, A, N, and O,
over the limited temperature range (at most 20°C) of
the measurements which were in the region of 0.6 T/T..
It is evident from Fig. 4 that Eq. (4.1) with n=1.22
would fit our predicted temperature dependence with an
error of not more than a few percent over the major
portion of the temperature range.

At higher temperatures, say from 0.7 to 0.9 T/T,, it
will be seen from Fig. 3 that & could be approximately
fitted by a relationship linear in T and which extrapo-
lates to a zero ¢ at a temperature § below T',. Thus we
can write

o=ao 1—(T+48)/T.],

which will be recognized as a general form of the
Ramsay-Shields equation.®

Thus the temperature dependence of ¢ predicted by
our treatment is consistent with that given by two
relationships which, in turn, are known to be consistent
with experimental measurements.

b. Absolute Surface Free Energies for
Liquid Ne, A, N», and O,

Equation (3.19) can be rewritten in terms of 7o (the
intermolecular distance) V, (molar volume) and N,
(Avogadro’s number) to give:

or=(2ET N/1o) (6/m)}(NoV ) io,

and substituting for the physical constants {cgs units)
we obtain:

or=2.44\/r0) T 0,/ V m? ergs cm™2, 4.2)

If o5 is a surface energy, the value required for V., is the
molar volume of the liquid at absolute zero. Assuming
that this is V,/3.5" and that A/ro= (11/7)} as evaluated
in Sec. 3a for a 6-12 potential, the surface energies of
liquid neon, argon, nitrogen, and oxygen have been
calculated from data compiled by Guggenheim.!* The
results are shown in column 7 of Table I. It will be noted
that they are in good agreement with the measured
values {column 6), the greatest deviation being 13.79,
for neon.

TaBre I. Observed and calculated surface free energies for Ne,
A, N3, and O,.2

Feale

Ve Te T or oons  ergscm~z  Diff,
Liquid cm3mole™ °K °K  (Fig. 4)ergsem™2 Eq. (4.2) LA
Neon 41.7 448 26.6 0216 4.99 5.68 4137
Argon 753 150.7 870 0226 1268 1345 46.1
Nitrogen 90.2 126.0 80.0 0.188 8.27 8.32 +0.6
Oxygen 745 1543 800 0.267 1573 16.33 +3.8

* Values of V¢, T¢, and oobs taken from data compiled by Guggenheim 1t

# W, Ramsay and J. Shields, Phil. Trans. A184, 647 (1893).
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c. Temperature Dependence of ¢ in
Vicinity of T.

Apparently, the only comprehensive data available in
the vicinity of the critical temperature are those of
Atack and Rice® for the cyclohexane-aniline system.
These authors determined the interfacial energy over
the range of 0.35° to 3.16°C below T, (29.582°C)¢ by
measurement of the capillary rise. Their results are
plotted in Fig. 6 in the form of (o)? versus temperature.
The radii of the circles enclosing the points corresponds
to an error of approximately 0.005 mm in the capillary
rise. The experimental points appear to be adequately
fitted by a straight line in accordance with Eq. (3.21)
despite the fact that this system is one which apparently
has a cubic coexistence curve in the vicinity of T',.

Corresponding to Eq. (4.2) we have for Eq. (3.21):

(or) 1 =284\ /ro) (T (V) HTe— DL (43)

Substituting A/ro=(11/7)3, T,=302.6°K, V,=102.2
cm® mole™ (calculated using a density of 0.864 g cm™?
and a molecular weight of 88.1), gives a theoretical
slope of 4.02X 1072 erg?7—' cm?, which is lower than the
observed slope of 7.88X107% This deviation is not
surprising since the simple model we used for calculating
MAro is a poor approximation for cyclohexane-aniline
solutions. The experimental data could be fitted exactly
by setting \/ro=3.4. This value is not unreasonable and,
furthermore, it can be independently checked by the
optical method described in the next section.

23513)). Atack and O. K. Rice, Discussions Faraday Soc. 15, 210
(1953).
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5. SUGGESTED OPTICAL MEASUREMENTS

We have predicted that an interface is diffuse and
that in the critical region its thickness is strongly
temperature dependent. A direct measurement of the
thickness would obviously be of value in providing an
independent check on the values of « or A calculated
from experimentally determined interfacial free energies.

In classical optics it is usually assumed that a re-
flecting interface is sharp: i.e., that there is a discon-
tinuous change in the refractive index. In general, this
assumption is satisfactory since most optical properties
depend only on the difference in the refractive indices of
the adjoining media. However, Drude? has shown that
an exception occurs for the reflection of light which is
incident at the Brewsterian angle and is polarized at 45°
to the plane of incidence. Under these conditions the
reflected beam is elliptically polarized with a coefficient
of ellipticity p which depends on the diffuseness of the
interface as indicated by the following equation :

p=[r(ecaten)i I ho(ea—eg) ]
o

X [(e—eq)(e—eg)/eldx, (5.1)

where A is the wavelength of the incident radiation, x
the distance and e the dielectric constant (the subscripts

% M. Born, Optik (Verlag Julius Springer, Berlin, 1933), p. 39,
Eq. (19).
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referring to the bulk liquids). Since the dependence of ¢
on distance is normally not known, this equation is
usually employed in an approximate form to find the
thickness of a thin intermediate layer which is assumed
to have a constant value of e given by the geometric
mean of e, and eg. In our case this assumption is
unnecessary because we have an expression for the
variation of composition with x. If we assume that e
varies linearly with composition, we obtain upon inte-
gration of Eq. (5.1) that, in the region of the critical
point,

p=[8n(de/dc)k¥ | hoesvi T, (5.2)
where ¢, is the value of € at the critical composition. We
thus predict that in the vicinity of the critical point the
coefficient of ellipticity is temperature independent.
This is because the decrease in the difference of the
compositions of the two solutions is exactly compen-
sated by the increase in the thickness at the interface.
So far as we know, p is the only property which exhibits
this behavior in the critical region and it should there-
fore be a particularly favorable one for experimental
study.

6. SUMMARY AND DISCUSSION

In this paper and in one which is to appear subse-
quently, we have attempted to treat the free energies of
an interface and of a critical nucleus as being particular
stationary values of a general expression for the free
energy of a system having a spatial variation in one of
its scalar properties. We have shown that such an ex-
pression can be derived and that it is the integral of the
sum of two contributions, one being a function only of
the local value of the property and the other (the
“gradient energy”) a term which is proportional to the
square of the local gradient. The minimum of this
integral with respect to a one-dimensional composition
or density variation corresponds to the free energy of a
flat interface. The properties of the interface predicted
by this treatment can be summarized as follows:

(1) The interface between two coexisting phases is
diffuse and its thickness increases with increasing tem-
perature until at the critical temperature (7,) the
interface is infinite in extent.

(2) In the critical region ¢ varies as (T.—T)% This
result is found to be in accord with experimental
measurements,

(3) For a regular solution ¢ can be evaluated in terms
of the molar volume, the critical temperature and a
rms “Interaction distance” (A) which is a sensitive
function of the intermolecular potentials. With a
Lennard-Jones 6-12 potential the calculated and ob-
served surface free energies of liquid Ne, A, Ny, and O,
are in good agreement.

(4) The equation for the temperature dependence of
o of pure liquids is consistent with two well-known
empirical expressions,
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An additional interesting feature of our treatment
(and one which is important to the nucleation theory) is
the demonstration that ¢ is isotropic for a coherent
interface in an unstrained cubic lattice. This is not the
case for Becker’s expression'® because his interface
was confined to a nonequilibrium configuration. And
though the treatments of Ono® and Hillert® should give
an isotropic o, this fact was apparently not recognized
because of their use of difference equations which could
only be solved numerically. These equations were set up
in terms of the interplanar spacing d and the fraction m
of the number of nearest neighbors for a given atom
which are in an adjacent plane. In our treatment this
would correspond to setting A= (md®?}. Thus even
though m and d are individually dependent on the
orientation, the factor (md?)? which appears in the final
expression for ¢ is invariant and for a nearest neighbor
model is equal [ from Eq. (3.10)] to ro/V3, where 7, is the
radius of the first coordination shell. Physically, this
means that the composition difference between suc-
cessive planes will vary with orientation, but that the
gradient relative to the lattice parameter remains
constant.

In conclusion we should like to stress the limited
applicability of our treatment. According to our basic
assumptions the metastable free energy of the system
must be a continuous function of the property concerned
and, furthermore, the ratio of the maximum in this free
energy function to the gradient energy coefficient «
must be small relative to the square of the intermolecular
distance. If this latter requirement is not satisfied then,
as will be seen from Eq. (2.23), there will be a steep
gradient across the interface and it is then no longer
justifiable to neglect derivatives higher than the secoad
in deriving Eq. (2.1). We believe that in practice these
conditions are likely to be satisfied only if there exists a
critical point in the system or if one would have occurred
but for the intervention of some other phase change,
such as a eutectic.

A second and less obvious limitation (which also
applies to all previous treatments) arises because we
have only examined in detail the effect of a variation in
a single property of the system, This suffices for a pure
liquid surface where the only likely variable is density,
and it is satisfactory for a binary liquid-liquid interface
providing it can be assumed {a) that only the composi-
tion varies, the density remaining constant across the
interface, or (b) that the gradient energy coefficient for
the density variation is negligible compared with that
for the composition variation. However, there are
undoubtedly instances (such as at the surface of a
binary liquid) where these conditions are not satisfied.
The method of extending our treatment to cover the
multiproperty case has been briefly indicated in a
footnote. ||
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APPENDIX
Symbols

4 Interface area (cm?).

E Intermolecular potential (erg).

Ny Avogadro’s number (6.022X10% mole™).

Ny Number of molecules per unit volume (cm=2).

T Temperature (°K).

T, Critical or conjugate temperature (°K).

Ve Critical volume (cm3 mole™).

Va Molar volume (cm?® mole™).

Zn Coordination number of #th shell.

F Total free energy of system (erg).

¢ Mole fraction of B component.

€ey Cay €5 Bquilibrium compositions.

Ce Critical composition.

Ac (e—co).

fo Free energy per molecule of homogeneous so-
lution (erg).

Ir Free energy per molecule of a homogeneous
regular solution {(erg) [Eq. (3.1)].

Af Free energy per molecule referred to a stand-
ard state of an equilibrium two-phase mix-
ture (erg) [Eq. (2.11)]].

k Boltzmann’s constant (1.38X10 ¢ erg deg™).

! Thickness of interface (cm) [Eq. (2.25)7].

T Radius of #th coordination shell (cm).

70 Radius of first coordination shell or inter-
molecular distance (cm).

s Entropy per molecule (erg deg™).

% Enthalpy per molecule (erg).

x Distance (cm).

B, v Constants defined by Eqs. (2.17) and (2.18.)

€ Dielectric constant.

K Gradient energy coefficient (erg cm?).

A Interaction distance (cm) [Eq. (3.10)].

Mo Wavelength of light (cm).

n Chemical potential per molecule (erg).

u(e) Chemical potential in coexisting phases
(erg).

14 (EAB—(l/Z)(EAA+EBB) (erg).

p(r) Reduced radial distribution function.

p Coefficient of ellipticity.

o Interfacial freeenergy (ergcm—2) [Eq. (2.15)7].

ar Reduced interfacial free energy for a regular
solution (=or/2kTANV).

wn Zuvn (erg).



